
Optimal Fleet Allocation of Freeway Service Patrols

Yafeng Yin

# Springer Science + Business Media, LLC 2006

Abstract As one component of traffic incident management systems, freeway
service patrols (FSP) facilitate quick removal of incidents through faster response and
reduced clearance time. This paper is to investigate how to allocate tow trucks among
patrol beats to maximize the effectiveness of the FSP services. A min–max bi-level
programming model is proposed to determine an optimal fleet allocation that
minimizes the maximal system travel time that incidents may incur. A heuristic
iterative solution algorithm is proposed to solve the model. Both the model and the
algorithm are demonstrated and validated through a numerical example.
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1 Background

Traffic incident management is a planned and coordinated process to detect, respond
to, and remove traffic incidents and restore traffic capacity as safely and quickly as
possible. It has emerged as a proven solution to ensure highway efficiency and
reliability (Farradyne, 2000). As one component of incident management systems,
freeway service patrols (FSP) facilitate quick removal of incidents through faster
response and reduced clearance time.

FSP typically operate as follows. The freeways are divided into disjoint beats, each
10–20 miles long with a certain number of tow trucks patrolling on. These trucks
travel back and forth along the beat, stopping to clear incidents in a first-reach-first-
serve manner. The tow trucks would remove the vehicles stalled in the freeways and
provide services such as changing flat tires and offering a needed gallon of gasoline.
If they cannot get the vehicles operational in a few minutes they will tow them off the
freeway to a designated area (Petty, 1997). FSP systems have been deployed exten-
sively across the U.S., such as in Chicago, Los Angeles and the San Francisco Bay
Area. Reviews on these practices can be found in Morris and Lee (1994), Fenno and
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Odgen (1998) and Skabardonis et al. (1998) among others. Note that the way FSP
systems operate is different from that of incident-response dispatch systems. FSP
tow trucks spontaneously detect, respond to and clear the incidents. In contrast, in
the incident-response systems trucks are placed at certain depots, waiting for the
dispatch commands. Once an incident is detected or reported, the dispatch center
will dispatch a truck to the incident location.

Previous research has examined the benefits of FSP. For example, Skabardonis
et al. (1998) evaluated the FSP system on a 7.8 mile section of I-10 freeway (Beat 8)
in Los Angeles, and reported that the services reduce incident duration in the order of
15 min and the B/C ratio is greater than 5 where benefits calculated include delay and
fuel savings. Levinson et al. (2003) carried out a stated preference analysis to
investigate the utility that FSP provide to an individual and found that the B/C ratio
for the Los Angeles FSP is in the range of 6.2–6.3. Moore II et al. (2004) examined
the prevailing assumption that FSP may reduce the likelihood of secondary
accidents and concluded that secondary accidents on Los Angeles freeway are
much less frequent than generally reported and avoiding secondary accidents
provides only a small incentive to deploy FSP. However, the expected benefits
associated with reducing already low secondary rates may be sufficient to justify
the program.

It has been well recognized that FSP deployment strategy is the key to the success
of the program. Design of the strategy involves determination of patrol beats, fleet
size, allocation of the fleet among beats and hours of operations etc. In practice, these
decisions are often made based upon engineering experience and judgment. In view
of this, investigations have been conducted to develop simulation, statistical and
optimization models to help with the decision makings.

Pal and Sinha (2002) and Ozbay and Bartin (2003) have developed simulation
models for evaluating various FSP system configurations. Certainly, if a small
number of alternatives can be predetermined, such simulation models can be
adopted to select the best deployment or expansion strategy of FSP services.

Davies et al. (2004) developed a tool to determine the B/C ratio for providing
new FSP service to a freeway section or enhancing the existing service. Given the
number of tow trucks on the section, the tool uses statistical models, derived from
analysis of over 120 existing beats with 680,000 assists in California, to estimate
the delay, fuel and emission savings per assisted incident, and consequently
calculate the B/C ratio. The tool is helpful to the decision making on where to
implement the next service patrol. Khattak et al. (2004) developed another tool for
the same purpose. The tool allows users to obtain statewide rankings for a freeway
section based on three index criteria, and estimate the B/C ratio of implementing
FSP on that section. The estimates are made primarily based upon statistical data
and user inputs. It should be pointed out that both decision-support tools focus on
the facility level and localized impacts, lacking a systems perspective.

This paper does not attempt to address all of the issues associated with FSP
deployment strategies. The paper is only concerned with how to assign tow trucks to
FSP beats to maximize the effectiveness of FSP services, given the setup of the beats
and the fleet size. In the current practices, the allocation is made in a heuristic
manner. Uniform allocation is sometimes adopted, or the fleet is allocated pro-
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portionally to the criteria like traffic volume, vehicle miles traveled and incident
rates etc.

The most directly relevant research from the literature is Petty (1997) and Ozbay
et al. (2004). Petty (1997) proposed a model for determining where to place tow
trucks so as to maximize the expected reduction in congestion, based on traffic
theory in combination with marginal benefit analysis. Ozbay et al. (2004) developed
a mixed-integer programming model to determine the number of service vehicles
assigned to each depot given the locations of depots, and the distribution of incident
occurrences. Both studies assume a prior knowledge of incident occurrence distri-
butions, and do not take into account interactions among system performance, inci-
dent occurrences, drivers’ spontaneous responses to incidents, and service intensities
of FSP on various beats.

The remainder of the paper is organized as follows. Section 2 presents the model
formulation for FSP fleet allocation problem, and Section 3 proposes a solution
algorithm for the model, followed by a numerical example in Section 4 to
demonstrate and verify the model formulation and solution algorithm. Conclusions
and recommendations for further research are offered in the last section.

2 Model Formulation

2.1 Definition of the Problem

We consider a FSP fleet allocation problem for a general traffic network. Given a
limited number of FSP tow trucks and the setup of FSP beats, the decision to make is
assigning trucks to FSP beats to maximize the effectiveness of FSP services. Since
the length of each beat is fixed, more tow trucks patrolling on the beat imply higher
service intensity, quicker removal of incidents and consequently less incident-
induced delay. Since the impacts of similar incidents may vary significantly from
location to location, where to place the tow trucks is critical to the effectiveness of the
services.

There exist a variety of ways to represent the effectiveness of FSP services, such as
the expected reduction in congestion. Considering the fact that decision makers are
mostly risk averse and are very often more concerned with the high-consequence
scenarios, this study attempts to minimize the maximal system travel time that
incidents may incur. In other words, we try to obtain a fleet allocation that achieves
the least system total travel time under its corresponding worst-case scenario caused
by incidents (note that the worst-case scenarios could be different for different fleet
allocation plans).

2.2 Time-Independent Modeling Framework

A time-independent modeling framework is used in this paper. There are two reasons
for adopting such a static framework. Firstly, as aforementioned, FSP work in a way
different from the real-time dispatch systems, and the decision of FSP fleet allocation
is Bonce for all^ rather than real time. Certainly different patterns of service intensity
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or vehicle allocation could be determined for different times of day. Secondly, for
each feasible vehicle allocation it is favorable to use a time-dependent analytical or
simulation traffic model to evaluate effectiveness of that alternative. However, such a
model is always too complicated to be incorporated in the optimization procedure.
Moreover, since the model to be developed in this paper is intended for the planning
purpose, details of traffic dynamics may not be a major concern at such a macroscopic
level.

2.3 Basic Settings

Consider a network G = (N, A), where N is the set of nodes, and A is the set of links.
Let W be the set of all origin–destination (O–D) pairs in the network, Rw be the set
of routes between O–D pair w 2 W and qw be the demand between O–D pair w.
Denote the number of FSP beats as I, and Bi is the set of links that beat i comprises.
Let f wr be the flow on route r 2 Rw, w 2 W, and va be the traffic flow on link a 2 A.
We thus have the following flow conservation equations:

va ¼
X

w2W

X

r2Rw

f wr dw
ar; a 2 A ð1Þ

X

r2Rw

f wr ¼ qw;w 2 W ð2Þ

f wr $ 0; r 2 Rw;w 2 W ð3Þ

where dw
ar ¼ 1 if route r between O–D pair w uses link a, and 0 otherwise. Denote

the travel time for each link a 2 A as ta(va, ca), which is assumed to be an
increasing/decreasing and strictly convex function of link flow va on that link/the
capacity ca of that link. Consequently, the route travel time is:

twr ¼
X

a2A
ta vað Þdw

ar; r 2 Rw;w 2 W ð4Þ

where twr is the travel time on route r 2 Rw between O–D pair w 2 W.
An incident may reduce freeway capacity for a certain period of time. With a

static modeling framework, to represent the impacts, we assume the capacity of
each link varies within a certain range due to incidents. Mathematically, for each
link a we have:

c0a % eac
0
a & ca & c0a þ eac

0
a ð5Þ

where c0a is the nominal link capacity. The nominal capacity could be the design
capacity, and it is not uncommon that actual freeway throughput is greater than this
nominal capacity for a certain period of time. ea is the coefficient of link capacity
uncertainty (variability), whose value depends on the characteristics of that link,
such as frequency and severity of incidents, and geometry. The value can be
calibrated using historical incident data including locations, types and durations. A
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two-step procedure could be used for the parameter calibration. The first step is to
determine the magnitude of capacity reduction according to the type and location of
an incident, e.g., using values suggested in Highway Capacity Manual (TRB, 2000)
while the second step is to compute the percentage of time when the capacity is
reduced in the peak hour, considering the duration of the incident. Consequently,
we obtain the value of eia for incident i. Going through the two-step procedure for
all of the recorded incidents, the value of ea can thus be quantified as the maximum
of eia.

If the capacity of each link varies independently, the uncertainty set of link
capacity pattern for the whole network will be a box. Recall that we are concerned
with the worst case incurred by incidents. With a box uncertainty set, if Braess’
paradox (Braess, 1968) is not present, it is straightforward to identify the worst-case
scenario where each link has its minimal capacity. However, it is rare, if not
impossible, that such a case would ever occur in reality. In other words, the box
uncertainty set is too conservative. To be more realistic, we define an ellipsoidal
uncertainty set to confine the link capacity pattern for a general network, written as:

C ¼ c 2 R Aj j
XAj j

a¼1

eac
0
a

! "%2
ca % c0a
! "2 & 1

#####

( )

ð6Þ

where |A| is the dimension of set A (total number of links). The set can be also written

as: C ¼ c 2 R Aj j
##c ¼ c0 þM(u; uk k2 & 1

$ %
, where M is a diagonal matrix whose

element is eac
0
a. Note that such an ellipsoidal uncertainty has been widely used in a

recent stream of research on robust optimization (e.g., Ben-Tal and Nemirovski,
2002 and El Ghaoui, 2003). The justifications for using such an ellipsoidal
uncertainty here are given as follows:

& The ellipsoidal set results in a computationally-tractable model formulation.
& The set is not too conservative because no element in the set implies that

capacities of all links achieve their respective minimum simultaneously.
& The set may be given parametrically by observation data of moderate size. As

aforementioned using the incident data, the value of ea can be calibrated.
Consequently the set can be created mathematically. Note that with the min–
max notion employed in this paper, we do not intend to incorporate all the
possible realizations of link capacities into the uncertainty set. Indeed, it has
been shown that even though the uncertainty set does not contain a single
realization of the random vector, the min–max concept still results in a
meaningful robust solution (Ben-Tal and Nemirovski, 1999).

2.4 Representation of FSP Impacts

Since FSP trucks continuously patrol on beats looking for incidents to assist, they
would be able to respond to incidents more quickly and thus reduce incident
durations. Incidents may reduce freeway capacities, and consequently locations of
incidents could become bottlenecks. Essentially, FSP are able to reduce durations of
activation of the bottlenecks. With the time-independent modeling framework, it is
impossible to exactly replicate such impacts of FSP. Rather, we assume that FSP may
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shorten the range of capacity variation of the link that trucks are patrolling on. In
other words, the impacts of the services are represented as reducing the variability of
link capacity.

With an ellipsoidal uncertainty set of link capacity of the network, what FSP
services really change is the geometry of the set, as illustrated in Fig. 1 for an
illustrative example with a two-link network, where the outer ellipse represents the
uncertainty set before FSP while the inner ellipse is the set after implementing FSP
at link 1. Note that, different FSP fleet allocations may change the uncertainty set
differently, leading to different worst-case scenarios realized from the corre-
sponding sets. More precisely, the uncertainty set C should be written as C(z),
where z is the vector of fleet allocation.

It is easy to know that the intensity or frequency of FSP tow trucks on each beat
is given as:

hi ¼
zi
ti

ð7Þ

where hi is the service intensity at beat i, zi is the number of tow trucks assigned to
beat i, and ti is the round trip time of beat i. This round trip time is endogenously or
exogenously (depending on whether tow trucks allowed to use shoulders or not)
calculated by segment travel times, layover times at ends of trips and incident
clearance time averaged across the trips made within the time period of interest.

We further represent the relationship between service intensity of FSP and link
capacity variability. For Oa 2 Bi, the set of links that beat i comprises, we assume
the following relationship:

ea ¼ s hið Þ ¼ s0 zið Þ ð8Þ

where s or s0 is a decreasing function of service intensity or number of assigned tow
trucks. The relationship is intuitively correct, and could be calibrated from
empirical data used in Davies et al. (2004) and Dowling et al. (2004). The data
were collected from 118 existing FSP beats in California, including information on
beat characteristics, average annual daily traffic, number of FSP tow trucks serving

Capacity of Link 1 

Capacity of Link 2 

Before FSP

After Implementing FSP at Link 1

Legend: dots represent realizations or observations of link capacities

Fig. 1 An illustrative example of FSP impacts
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the beat and number of the FSP assists. From the data, a relationship between
reduction of incident duration and the FSP service intensity can be established.
Consequently, we can obtain a relationship between the percentage of time of
capacity reduction in the peak hour and the service intensity. Multiplying the value
of ea without FSP will lead to the relationship in Eq. (8).

2.5 Estimation of Incident Impacts

As aforementioned, we attempt to determine a fleet allocation that minimizes the
maximal system travel time realized from the uncertainty set of link capacities. An
element in the set represents a possible realization of uncertain link capacities,
incurred by incidents. Intuitively, we may need to evaluate the resulting system
performance for each element in the set, and then find the maximum. Note that for
any given element or realization, the corresponding system performance is
deterministic. However, in order to accurately estimate the performance, we need
to describe how drivers react to incidents in a dynamic setting.

Because the modeling framework we propose is intended for planning purposes,
we adopt static user equilibrium model (Beckmann et al., 1956) to describe route
choice behaviors. For any (deterministic) realization of the uncertain link capacity
pattern from the ellipsoidal set, we solve a corresponding network equilibrium
problem with the realized link capacities to approximately estimate the resulting
system travel time incurred by the incidents. We further note that under the static
modeling framework, it is feasible to describe drivers’ spontaneous responses to
incidents in a degradable network, which would lead to a more accurate estimate of
system performance. Previous studies have been conducted along this direction,
such as Mirchandani and Soroush (1987), Uchida and Iida (1993), Chen et al.
(2002), Yin and Ieda (2001), and Lo and Tung (2003) among others. Our future
research will look into incorporating such a model.

The formulation of the user equilibrium model is presented as Eqs. (11)–(13),
and the definitions of the variables have been given in Section 2.3.

2.6 Formulation

We observe that decision makers tend to be risk-averse and are more concerned with
the worst-case scenarios. Therefore, it would be more desirable to have a tow-truck
fleet allocation that performs better in the worst-case scenario even though the
average performance is relatively poorer. In view of this, we intend to determine a
fleet allocation that minimizes the maximal system travel time that incidents may
incur. The key point here is that we assume the uncertain capacity caused by incidents
is bounded by the ellipsoidal uncertainty set, whose geometry can be further affected
by the fleet allocation. By selecting such an ellipsoidal set, we can avoid being overly
conservative while the resulting fleet allocation will perform much better against the
worst-case scenario without losing much Bnominal^ optimality.

With the above considerations, the optimization problem can be written as:

min
z

max
c2C zð Þ

X

a

vata va; cað Þ ð9Þ
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subject to:

XI

i

zi & Z ð10Þ

where va is obtained by solving the following lower-level problem:

min
X

a

Z va

0
ta $; cað Þd$ ð11Þ

subject to:
X

r

f wr ¼ dw; 8w ð12Þ

f wr $ 0; 8r;w ð13Þ

where Z is the number of total available trucks. In summary, the upper-level
problem also has the following two definition constraints:

C zð Þ ¼ c 2 R Aj j
XAj j

a¼1

eac
0
a

! "%2
ca % c0a
! "2 & 1

#####

( )

ð14Þ

ea ¼ s0 zið Þ ð15Þ

and the lower-level problem should satisfy the following definition constraint:

va ¼
X

w2W

X

r2Rw

f wr dw
a;r; a 2 A ð16Þ

This is a min–max bi-level programming model. The upper-level problem
represents planners’ behavior, determining tow truck allocation to minimize the
maximal total travel time incurred by incidents. The lower-level problem represents
drivers’ route choice behaviors, affected by the allocation decision from the upper-
level and capacity reductions caused by incidents.

Note that variable zi, the number of allocated trucks on beat i should be integer,
and thus the above model should be an integer programming model. However, due
to the computational complexity, this paper treats it as a number. This
simplification does not necessarily impair the applicability of the model. In actual
applications, one could use the model to obtain optimal service intensity, and then
marginally adjust layover times to provide the intensity with an integer number of
vehicles, and eventually determine the fleet allocation.

3 Solution Algorithm

The model (9)–(13) is non-convex, and thus only local optima can be found. There
is no available solution algorithm for the model. Therefore, we propose a heuristic

228 Y. Yin



iterative algorithm to solve the model. Although the algorithm cannot guarantee
theoretically convergence to a local optimum solution, it has shown good con-
vergence and led to good results in our numerical experiments.

The iterative algorithm views the model (9)–(13) as a master problem with a
slave problem. The master problem is written as:

min
z

J zð Þ ð17Þ

subject to:
XI

i

zi & Z ð18Þ

where J(z) is a non-convex function, defined by the optimal objective function of a
slave model, which is to identify the worst-case scenario corresponding to the fleet
allocation plan z.

For solving the master problem, many efficient algorithms proposed in the
literature of operations research could be potentially applied. Since it is difficult to
derive analytically the gradient lzJ(z) and only values of J(z) can be made
available, we apply iterative descent methods with finite differencing derivatives,
such as the sequential quadratic programming algorithm (SQP) by Han (1976).

The slave bi-level programming model defining J(z) is given as below:

J zð Þ ¼ max
c

X

a

vata va; cað Þ ð19Þ

subject to:

c 2 C zð Þ ð20Þ

where va is obtained by solving the following lower-level problem:

min
X

a

Z va

0
ta $; cað Þd$ ð21Þ

subject to:
X

r

f wr ¼ dw; 8w ð22Þ

f wr $ 0; 8r;w ð23Þ

A number of algorithms can be applied to solve the slave problem, such as those
proposed by Yang et al. (1994) and Chiou (2005). In this paper, we apply the
sensitivity-analysis-based iterative method by Yang et al. (1994). The basic idea of
the algorithm is to formulate local linear approximation of the upper-level objective
function using the derivative information from sensitivity analysis for equilibrium
flows (e.g., Tobin and Friesz, 1988), and solve the resultant linear programming
problems for a descent search direction. Therefore, the algorithm is in fact a
sequence of linear approximation to the original problem.
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Note that with the ellipsoidal capacity uncertainty set, the local linear approxi-
mation to the original bi-level model turns out to be a quadratically constrained
program as follows:

max
uk k&1

rcT
T( M ( u ð24Þ

where lcT is the gradient of the total travel time with respect to link capacity,
calculated by conducting the sensitivity analysis for user equilibrium flows. This
program can be analytically solved; the optimal objective value is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M(rcTð ÞT( M(rcTð Þ

q

and the optimal solution is M(rcT
' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M(rcTð ÞT( M(rcTð Þ
q

.
In summary, the outer iteration of the iterative procedure applies a SQP

algorithm with finite differencing derivatives to solve the master problem. In each
iteration, embedded bi-level slave problems are solved by the sensitivity-analysis-
based iterative method for specific fleet allocations to identify the corresponding
worst-case scenarios.

4 Numerical Example

A numerical example is now presented to illustrate the proposed model. The
example road network shown in Fig. 2 has 13 nodes, 19 links and 4 O–D pairs,
adopted from Nguyen and Dupuis (1984). The Bureau of Public Road link travel
time function was used

ta vað Þ ¼ t0a 1þ 0:15( va
ca

( )4
 !

ð25Þ

And the network characteristics and O–D demand are given in Tables 1 and 2,
respectively.

65 7

10 11

8

13 3

29

4

1 12
2

18

3

64

13

14

19

15

8 10 11

16

12

5

1 17

i ja

Legend:

Node number

Link number

65 7

10 11

8

13 3

29

4

1 12
2

18

3

6

97

4

13

14

19

15

8 10 11

16

12

5

1 17

i ja

Legend:

Node number

Link number

Fig. 2 An example network
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In the example, the FSP impact function was assumed to be s0a zð Þ ¼ e0a ( e%0:5*zi ,
where e0a is given in Table 1. The setup of beats is also illustrated in Fig. 2, which
is: Beat 1 = {links 1, 6}; Beat 2 = {links 3, 5, 7}; Beat 3 = {links 17, 8}; Beat 4 =
{links 12, 14}; Beat 5 = {links 4, 13} and Beat 6 = {links 10, 16}.

A SQP subroutine with finite-differencing derivatives in Matlab was used to
solve the master problem (17)–(18) as well as one self-programmed subroutine to
solve the bi-level programming model (19)–(23).

We first examined the convergence of the iterative algorithm. Figure 3 plots the
value of the objective function against outer iteration number of the SQP procedure,
where the size of FSP fleet was 10. It can be observed that the outer iteration of the
algorithm had a fast convergence; convergence was achieved in about 15 iterations.
However, total computation was quite demanding due to the use of finite-
differencing derivatives, which suggests that the iterative algorithm may not be
applicable for a large-scale network. The resultant fleet allocation is 3.1, 1.5, 0, 0.7,
1.9 and 2.8 for Beats 1 to 6, respectively.

To validate the effectiveness of the proposed model, we compared system
performances that optimal and uniform allocations may result in. The total fleet was
set as 6 and uniform allocation means one assigned truck on each beat. We
computed differences of total travel times that uniform and optimal allocations
could achieve under their corresponding worst-case scenarios. In order to examine
the impacts of capacity uncertainty and network congestion, we varied the level of
capacity uncertainty by multiplying e0a listed in Table 1 by an amplifier, changing

Link a t0a c0a e0a

1 7.0 800 0.5
2 9.0 400 0.1
3 9.0 200 0.2
4 12.0 800 0.3
5 3.0 350 0.2
6 9.0 400 0.5
7 5.0 800 0.2
8 13.0 250 0.2
9 5.0 250 0.1
10 9.0 300 0.4
11 9.0 550 0.1
12 10.0 550 0.5
13 9.0 600 0.3
14 6.0 700 0.5
15 9.0 500 0.1
16 8.0 300 0.4
17 7.0 200 0.2
18 14.0 400 0.1
19 11.0 600 0.1

Table 1 Network characteris-
tics of the example network

Table 2 O–D travel demand
for the example network O/D 2 3

1 400 800
4 600 200
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from 0 to 2.0 (value of 0 represents the case of deterministic link capacities), and
considered three demand levels: 70, 100 and 110% of the demand given in Table 2.

Figure 4 depicts relative performance differences of optimal and uniform
allocations (the worst-case system travel time of uniform allocation minus that of
optimal allocation divided by the latter) against varied values of the amplifier for
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three demand levels. The results are within expectation and intuitively correct. We
have the following observations from the figure:

& The performance difference is always positive, suggesting that the optimal fleet
allocation always performs better against the worst-case scenarios than the
uniform allocation does.

& In the case of deterministic link capacities where FSP impose no impacts at all,
there is no performance difference between uniform and optimal allocations, as
expected.

& The relative performance difference varies from 0 to 12%. Generally speaking,
the difference becomes more significant with higher levels of capacity
uncertainty or network congestion, suggesting that the model may contribute
more or make more difference in the situations of high frequencies of incidents or
high levels of network congestion. However, the relative difference that the
model can result in may become less significant when the network capacity is
highly fluctuating, e.g., the case with the uncertainty amplifier equal to 2.0 in
Fig. 4.

5 Concluding Remarks

We have presented a min–max bi-level programming model to determine the optimal
fleet allocation strategy for a FSP system. A heuristic solution algorithm has been
proposed to solve the model. Both the model formulation and the solution algorithm
have been validated and demonstrated through a numerical example.

Further research may follow the following directions: 1) propose more efficient
algorithms for the model and apply them to large-scale networks; 2) validate the
assumptions of the model formulation and calibrate parameters by using actual data
and then apply it to a real-world network; 3) incorporate models that describe drivers’
route choice in degradable networks and their impacts on the overall system
performance, and 4) extend the model to simultaneously determine the setup of beats
and fleet allocation.
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